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The melt-solid interface of hard spheres is studied by atomistic simulations and density-functional
theory (DFT). The Monte Carlo method is used to compute density profiles for the three most impor-
tant orientations of the fcc-solid—melt interface. The interface ranges in thickness from 4d for the loose-
ly packed (110) interface to 6d for the closely packed (111) interface, where d is the hard-sphere diame-
ter. The planar generalized effective liquid approximation (PGELA) free energy functional, which accu-
rately predicts solid and liquid free energies and coexistence conditions, is used in the DFT analysis of
the hard-sphere melt-solid interface. Two parametrizations are compared for variations of the density in
the interfacial region. The structural predictions of the interface by the Carnahan-Starling PGELA are
in good agreement with the simulations. The calculations of the surface free energies show that the (110)
interface has a smaller surface free energy, followed by the (100) interface and then closely by the (111)
interface. These results are compared to other recent studies of the hard-sphere melt-solid interface.

PACS number(s): 61.20.Gy, 64.70.Dv, 64.60.Cn

I. INTRODUCTION

The melt-solid interface plays a very important role in
the determination of properties of crystals grown from
the melt. When the solidification rate is zero or very
small, the interface is in equilibrium. Then the interface
is fully characterized by its microscopic structure, its
thermodynamic properties, and its effect on dynamic
properties, such as the diffusivity of solutes in this region.
This paper focuses on the prediction of the structure and
thermodynamic properties for an interface at equilibri-
um. The effect of the melt-solid interface on dynamic
properties has been recently reviewed by Laird and Hay-
met [1]. The kinetics of crystal growth and of nonequili-
brium solidification at the melt-solid interface are also
very important, but are beyond the scope of this work;
the reader is referred to Ref. [2] for discussion of these to-
pics.

The melt-solid interface has not been studied experi-
mentally to the extent of the solid-gas or the liquid-gas
interfaces, despite its importance in the nucleation and
growth of crystals from the melt and other phenomena
involved in the processing of materials. The focus of
most experimental studies has been the direct or indirect
measurement of the solid-melt interfacial free energy.
There is no experimental information on the structure of
the melt-solid interface. In contrast to solid surfaces,
where techniques, such as low-energy electron diffraction
and Auger spectroscopy, allow direct structural analysis
of the interfacial region [3], it has been impossible to ap-
ply these methods to the study of a surface confined be-
tween two dense phases that interfere with the probing
radiation.

Theoretical modeling of the melt-solid interface has
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evolved significantly. A review of the advances in the de-
velopment of these theories is given by Woodruff [2].
Most theories are concerned with the structure of the
melt-solid interface. The most famous theory for the
equilibrium melt-solid interface was developed by Jack-
son [4] and is extremely simple. It is built on a two-level
model, where only nearest-neighbor bonds are con-
sidered, and is based on a simplified Bragg-Williams sta-
tistical model. Surprisingly, the behavior of many ma-
terials follows this simple model, although there are a few
exceptions [2]. The notion that the interface can extend
at the most to two layers is extremely simplistic. To
remedy that, Temkin [5] proposed a theory that considers
the interface as a region consisting of layers that include
both solid and liquid atoms and uses the number of layers
as the key variable to be adjusted in the minimization of
the overall free energy of the system. This model reduces
to the Jackson theory in the limit of a two-layer surface.
Besides these important structural models, there have
been a few nonstructural theories dealing with the calcu-
lation of yg;. Most notable are the broken bond models,
which sum up energies associated with “broken” or ‘“dan-
gling” bonds in the crystal due to the absence of similar
atoms on the liquid side of the interface. These theories
either associate with the broken bond a suitable portion
of the binding energy of each atom in the solid or use an
interatomic potential with the help of one or more adjust-
able parameters [6-8].

Clearly, what is lacking in all these models of the
melt-solid interface is the consistency provided by a
framework such as classical density-functional theory.
Density-functional theory (DFT) provides the flexibility
to study the coexistence of the solid and the liquid
phases, is not limited by the local inhomogeneities in the
interface, and provides both structural and thermo-
dynamic information.

All DFT approaches for modeling the melt-solid inter-
face begin with calculations of the solid-liquid coex-
istence conditions. These studies of the melt-solid inter-
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face have followed advances in the development of flexi-
ble and accurate free energy functionals. Another equal-
ly important feature in approximations of the interfacial
region is the type of density parametrization that is used
to describe the interfacial variation of the density.

To describe inhomogeneous solids Haymet and Oxtoby
[9] introduced the concept of a spatially varying order
parameter. In a perfect crystal the order parameter is
fixed to its bulk value. In an inhomogeneous solid (for
example, in the melt-solid interface, near a dislocation, or
near a grain boundary) the density variations in the solid
are written as

p(r)=pol 1 +po(0)]+po 3, (re ", (1

where the {k,} represents the set of reciprocal lattice
vectors of the crystalline lattice and {u,(r)} is the set of
spatially varying order parameters. The order parame-
ters describe all the inhomogeneity in the system and
vary spatially; e.g., they depend on one space dimension
in the modeling of an interface. Oxtoby and Haymet [10]
used this approach in the study of bcc (100) and (110) in-
terfaces with the melt and modeled the variation of the
order parameters in the interfacial region by a square
gradient approximation (SGA). Using a very small num-
ber of reciprocal lattice vectors they predicted the inter-
facial region to be very broad, with a width of approxi-
mately 10-15 layers, and justified a posteriori the validity
of the SGA.

The SGA has also been used by Shih et al. [11] in a
Landau-Ginzburg theory for the melt-solid interface.
This approach yields a tractable mathematical descrip-
tion that was used to estimate the interfacial free energy
for Si and Ge melt-solid interfaces [12], but yields only
isotropic estimates, and is not based on a self-consistent
prediction of freezing. Zeng [13] adopted the SGA and
assumed a functional form for the order parameters. Us-
ing just one order parameter, Zeng obtained reasonable
results for alkali metals. Moore and Raveche [14] ap-
plied a perturbative free energy functional in conjunction
with the very simple parametrization for the interface,
p(r)=p,+(z)[p(r)—p,], coupled with a square gra-
dient approximation for the variation of ¥. This was not
a self-consistent theory of freezing, because simulation
values for the coexistence properties of the Lennard-
Jones (LJ) potential were used as input. They obtained
interfaces with unrealistic structures and a broadness of
approximately 15 layers. They also found a large degree
of anisotropy in the surface free energies, with y; for the
(111) orientation being a factor of 3 above the value for
the (100) orientation. These predictions are at odds with
the results of atomistic simulations.

An alternative variational approach was examined by
McMullen and Oxtoby [15,16] using the same perturba-
tive DFT free energy functional employed in [14]. They
assumed a functional form for the variation of the order
parameters throughout the interface similar to that used
by Zeng [13] and kept a subset of the {a, } as independent
variational parameters. A density parametrization
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without any peak broadening led to nearly isotropic sur-
face free energies of yg d?/kT~1.7. Introducing peak
broadening led to density profiles in closer resemblance to
those obtained from simulations and led to an increase in
the surface free energy to y g d2/kT =4 [16].

All the theories described above use the perturbative
DFT free energy functional. Also, a number of these add
the square gradient approximation, which cannot be
justified. The broadness of the interface should not be in-
put into the model, but should be predicted as a conse-
quence of the analysis. Curtin [17] first attempted such
predictions using the Percus-Yevick (PY) hard-sphere
melt-solid interface and the weighted density approxima-
tion (WDA) nonperturbative free energy functional. The
square gradient approximation was avoided through the
use of a flexible parametrization of the interfacial density.
Curtin [18] predicted that the (111) and (100) interfaces
have similar widths, each spanning approximately four
layers. The surface free energies of the (111) and (100) in-
terfaces were computed as ygd?/kT=0.6310.02 and
0.66+0.02, respectively. The ordering of the magnitudes
of these surface free energies is in contrast to the simula-
tion results of Broughton and Gilmer for the LJ system
[19].

The large computational effort required to study the in-
terface using the method of Curtin inspired Marr and
Gast [20] to develop a planar formulation of the WDA
free energy functional, introducing a one-dimensional
weighted density that captures the local free energy vari-
ations across the interface. The savings are significant
that result from reducing the dimensionality of the
weighted density. Marr ang Gast used this functional in
the study of the (111) PY hard-sphere interface and found
results very similar to those of Curtin. The thickness of
the (111) interface was predicted to be approximately 3—-4
layers, while the surface free energy was calculated to be
ys1.d?/kT=0.60+0.02.

The analyses of Curtin [17,18] and Marr and Gast [20]
use the relatively inaccurate PY thermodynamic and
structural functions for the description of the high-
density uniform liquid properties required in the DFT
[21]. We present results for the planar generalized
effective liquid approximation (PGELA) free energy func-
tional, which yields very accurate predictions for both
the free energies and the solid-liquid coexistence condi-
tions for a hard-sphere system described by the
Carnahan-Starling (CS) equation of state and the Baus-
Colot direct correlation function [22]. The ability to ap-
proximate well both phases leads to conditions of coex-
istence that are closer to the real hard-sphere system.

A series of Monte Carlo (MC) simulations were per-
formed to investigate the structure of the hard-sphere
melt-solid interface; these simulations are presented in
Sec. II. The density-functional theory for the hard-
sphere melt-solid interface is presented in Sec. III and is
compared to previous DFT analyses. Emphasis is given
to the parametrization of the interface and the accuracy
of the free energy functional used in the DFT. Results
are presented for the (111), the (100), and the (110) hard-
sphere melt-solid interfaces. The results are compared to
the MC simulation predictions and discussed in Sec. IV.
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II. SIMULATIONS
OF THE MELT-SOLID INTERFACE

Atomistic simulations of the equilibrium melt-solid in-
terface (for reviews see [1,23,24]) have been performed for
a wide variety of systems ranging from water [25] to
semiconductor materials [26,27]. Simulations have also
been reported for nonequilibrium melt-solid interfaces in
an effort to model either laser annealing [28] or growth
under supercooling conditions [29]. The most widely
studied system using atomistic simulations is the melt-
solid interface of the Lennard-Jones potential [30-34].
The most complete study of this interface was presented
by Broughton and Gilmer [19,35], who compared the
(111), the (110), and the (100) interfaces at the triple point
of the LJ system. They found that the intrinsic widths of
these interfaces were quite similar, approximately 3o.
The density oscillations propagated further into the
liquid phase for the close-packed (111) and (100) inter-
faces. The most important contribution of this work was
the development of an accurate method for the direct cal-
culation of the excess interfacial free energy v through
simulations; unfortunately, this method has not found
wider application because of its computational intensity.

The hard-sphere system has been studied less
thoroughly, even though it is a very important system for
the development of theoretical models for the melt-solid
interface. Surprisingly, there have been no true simula-
tions of the hard-sphere melt-solid interface, with the
only study of this system using the Bernal model for the
structure of liquids.

The Bernal model [36] is essentially a static, random
close-packing description of the hard-sphere liquid. It
describes a liquid as being a heap of molecules, containing
no inherent regular structure, and manages to predict
qualitatively the pair distribution function and enthalpies
of phase transformations. This model has been studied
both experimentally, using either ball bearings [36,37] or
ping pong balls [38], and through computer simulation
[23]. Zell and Mutaftschiev [39] built a physical model of
the melt-solid interface by packing 2000 ping pong balls
in a container to generate the random packing necessary
to represent the liquid and then placed the model in con-
tact with a plane with close-packed hexagonal structure
representing the crystal face. The coordinates of the
spheres were logged and a density profile across the inter-
face was measured. The difficulties in this study and the
lack of precision of the coordinate measurements inspired
Bonissent and Butaftschiev [40] to construct a computer
model for the same system.

Both of these studies support the conclusion that the
melt-solid interface is relatively narrow—about 3 atomic
diameters wide—and that there is a substantial density
deficit in the layers of the liquid adjacent to the solid face
[23]. These results have been shown to be an artifact of
the static nature of the Bernal model [34,41], which also
was limited by the lack of any relaxation of the particles
comprising the solid wall in contact with the liquid [40].

The lack of true atomistic simulations for the hard-
sphere melt-solid interface has motivated the work de-
scribed in this section. Our goal is to generate density
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profiles for the three major orientations of this interface.
To do this requires the formulation of a simulation of a
hard-sphere interface without using the static packing
techniques of Bonissent and Mutaftschiev. The Monte
Carlo simulation described below overcomes this limita-
tion.

Simulation formulation and results

The details of a hard-sphere Monte Carlo simulation
are discussed in Ref. [42]. There are some considerations
for a melt-solid interface simulation that are worth not-
ing. First, coexistence must be ensured for the solid and
the liquid phase. Second, a starting configuration must
be generated that brings the two phases together without
overlap of the particles. Third, the interface should be
stationary during the simulation, otherwise the density
profiles will be artificially broadened.

The solid density is set to the coexistence value
p,d3=1.041 determined by Hoover and Ree [43]. The
solid phase is constructed layer by layer according to the
orientation of the face that is exposed to the liquid. Gen-
erating the liquid in contact with the crystal is somewhat
more complicated. In simulations of soft potentials, such
as the LJ potential, it is possible to take a liquid simulat-
ed at the required bulk density and temperature and then
brings it in contact with the solid phase. In the hard-
sphere case, this requires more effort. A liquid
configuration at the coexistence density p,d>=0.943
must be generated that does not overlap with the given
structured crystal surface. This step can be accomplished
by using a Bernal model for the hard-sphere liquid
against the crystal face [40] by either generating a liquid
configuration for a higher density, removing all particles
that overlap with the crystal particles and removing more
particles until the coexistence density is achieved, or by
melting a crystalline region at the liquid coexistence den-
sity that is in contact with the face.

In this work, a perfect crystal at the solid coexistence
density first is generated from a specified number of lay-
ers in the x, the y, and z directions, as described previous-
ly. This ensures the matching of the size of the simula-
tion cells for the solid and the liquid phases. The simula-
tion cell is assembled by bringing the liquid blocks in con-
tact with the crystal, in the way illustrated in Fig. 1.
Then (p, —p,)V particles are removed from the liquid
blocks. This can be done in one of two ways.

(i) Particles can be randomly removed from the block
effectively creating a very high concentration of vacan-
cies in the crystal, which induces melting. The difference
between the coexisting densities of the solid and the
liquid phase for a hard-sphere system is approximately
10%.

(ii) Particles from the layers of the liquid block that are
in contact with the crystal faces are removed. In princi-
ple, this step is equivalent to suddenly expanding the
crystal by 10%.

Both of these methods were tested and found to lead to
the melting of the liquid blocks after approximately
100000 MC sweeps, during which the solid block was
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FIG. 1. Algorithm for constructing the cell for the MC simu-
lation of the hard-sphere melt-solid interface.

held fixed. This configuration is then equilibrated for
another 100 000 MC sweeps.

The procedure used is equivalent to performing a
Monte Carlo simulation for a dense hard-sphere fluid
confined between structured crystal walls. Calculations
of hard-sphere fluids against or confined between struc-
tureless hard walls have been performed to study the wet-
ting properties of the hard-sphere fluid [44,45]. None of
these simulations have produced results for liquids with
densities p;d*>0.91 because of the difficulty in generat-
ing an initial configuration. One of the problems with
this method is that in the (N-V-T') Metropolis MC simu-
lation only the number density of the simulation cell can
be controlled and not the “bulk” liquid density. In this
case the liquid absorbs on the structured crystal walls,
thereby reducing the bulk liquid density to approximately
p;d*=0.93. This behavior also was observed by Snook
and van Megen [46].

The plane averaged density profile for the melt-solid in-
terface is generated by dividing the z direction of the
simulation cell into 1000 bins, counting the number of
particles in each of these bins throughout the simulation,
and averaging for the total number of sweeps as

p(Zi)E<N(Zi)>/me ’ (2)

where z; is the position of the ith bin, Vy;, is the volume
of the bin, and
N o~
N(z))= 3 olz—z), 3)
i=1

where 8 is defined as
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TABLE 1. System size parameters used in Monte Carlo simu-
lations of the melt-solid interface.

Parameter (111) (100) (110)
Ny(x) 8 12 18
N,(y) 10 12 14
Ny(z) 18 20 20
N,(z) fixed 6 8 8
N, total 1440 1440 1260
N, fixed 480 576 504
N, total 1740 2610 2284

Azb
2 4)

itz =22 <,<p g
Blz—z)= if z; 5 =Z3z

0 otherwise ,

where Az, is the width of the bin in the z direction.

The parameters used in the simulations are given in
Table 1. Periodic boundary conditions were used in all
three spatial dimensions, in a simulation cell with a rec-
tangular xy cross section. The density profiles for the
three interface orientations at the end of the first stage of
the simulations are shown in Fig. 2. The three profiles
are similar, but quantitatively different.

The liquid in contact with the (111) crystal face, which
is the most closely packed orientation, has a structure

L (@ (100)

p(z)d®
N W A O

s ® (o) ]

p(z)d’

r o (c) (111)

p(z)d®
N W

!

20

z/d
FIG. 2. Density profile computed after stage II of the MC
simulation of the hard-sphere melt-solid interface, for interfaces
in the (a) (100), (b) (110), and (c) (111) crystallographic orienta-
tions exposed to the melt.
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that persists for approximately 5d. The liquid that is
against the (110) crystal face is less structured. Approxi-
mately the same number of layers is formed (in all three
cases there are about 5-6 peaks in the oscillation of the
liquid density as it approaches the wall) because the spac-
ing between the layers in the (110) direction is smaller;
however, the structure of the wall propagates through a
smaller region of the liquid. For all three orientations,
the first layer is distinctly crystalline in nature, as can be
seen from the peak in the density. In the case of a hard-
sphere liquid at the coexistence density against a struc-
tured wall, the first layer adopts the structure of the static
solid substrate. In contrast, when a hard-sphere is
against a hard featureless wall the first layer assumes the
closest-packed (111) triangular lattice configuration, as is
inferred from the lattice spacing in the molecular dynam-
ics study of hard-sphere wetting by Courtemanche and
van Swol [47].

After the equilibration of the hard-sphere liquid in con-
tact with the static crystal with the desired orientation,
the particles designated as solid are allowed to move.
After 50000 equilibration steps, we start averaging over
the entire simulation cell to generate the desired density
profiles. This period is as important as stage 2 because it
allows the solid layers to relax to their equilibrium bulk
configurations. The mean density of the “bulk” liquid
phase was seen to rise during this stage, approaching the
“exact” liquid coexisting density of p,d>=0.943, thereby
indicating that the interface is indeed in equilibrium.

It is important to avoid translations of the bulk of the
simulation cell, which could lead to broadening of the
density peaks and to a flattening of the interface. To
prevent this the center of mass is shown in Table I for the
three interfaces. This constraint is much softer than
keeping static solid layers and should not affect the pre-
dictions for the density profiles across the interface. This
constraint was imposed by first calculating the center of
mass of the N, “fixed” particles, computing the displace-
ment from their static center of mass, and then by rescal-
ing all particle positions by this displacement. This cor-
responds essentially to translating the bins at every sweep
in order to guarantee that the bulk solid phase does not
translate.

Before the density profiles are discussed, the effect of
the soft constraint on the interface profiles is investigated.
Bonissent, Gauthier, and Finney [48] allowed only two
solid layers to be mobile, thus restricting the interfacial
thickness and affecting the interfacial density calculations
[41]. The effect of the constraint used here was studied
by short simulations for the (100) interface in which all
particles were moved freely, to mimic molecular dynam-
ics calculations in the melt-solid interface [19]. Averages
were taken over 5000 sweeps, in which time the transla-
tion of the center of mass of the central eight layers was
8x =0.046, 8y =0.024, and 8z =0.028; these movements
are very small compared to the spacing of the layers,
which is 8,50=0.783 for the (100) interface. The two in-
terfaces are compared in Fig. 3. Other than larger fluc-
tuations in the liquid density, which are expected because
the averages were constructed over a smaller number of
sweeps, the density profile of the unconstrained simula-
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FIG. 3. Comparison of (100) interface profiles generated by
(a) a simulation where the center of mass of the central eight
layers of solid was held fixed for 50 000 sweeps and (b) a simula-
tion where all particles were allowed to more freely for 5000
sweeps.

tion is very similar to that of the original simulation; the
constraint imposed has little effect on the density profiles
other than allowing the simulation to run for a larger
number of sweeps without any translation of the crystal.

Three simulations, one for each crystallographic orien-
tation, describe the hard-sphere melt-solid interface be-
cause no effects of temperature need to be considered.
The density profiles for the (100), the (110), and the (111)
interface orientations are shown in Fig. 4 after averaging
over 50 000 sweeps. Once again, the interfaces have some
similar and some distinctive features.

The (100) interface is the most interesting. The inter-
face width is approximately six layers. The first two lay-
ers are spaced with a separation of 8,,,=0.783, which
corresponds to the (100) spacing. The layers tend to relax
outward and the period of the density oscillations in the
liquid changes to that of the (111) spacing (8,;;=0.905),
as shown in Fig. 5. This observation is similar to one pre-
viously reported in the literature for a LJ system [19,34].
This feature is very difficult to approximate with density
parametrizations of the melt-solid interface, as is dis-
cussed further in Sec. III. The total width of the inter-
face based on the density variations is approximately
(4-5)d for the (100) interface.

The (111) interface has the most structure. As in the
case of the liquid against the static structured crystal
face, this is not entirely unexpected because the (111) face
is the most tightly packed. The interface width is ap-
proximately 5-7 layers. The spacing of the peaks of the
density oscillations remains constant at its bulk solid
value, until the peaks decay and become indistinguishable
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FIG. 4. Melt-solid interface density profiles for (a) (100), (b)
(110), and (c) (111) orientations of the crystal face exposed to the
melt.

from the noise in the liquid density. The width of this in-
terface is about (5-6)d.

The (110) interface has some unique features. The
spacing of the peaks in the density oscillations remains
equal to the bulk solid separation of 8,;,=0.554. The
transition from bulk to bulk liquid involves slightly more

1.0 T T T T T T b\ 1
AU v
2 WY (100)
B I |
[}
S l ]
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£l ] (110)
S 0.
L0
[}
Q
[=]
(o] L
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o
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i | - width of bin ]
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z/d

FIG. 5. Transition from (100) to (111) spacing of layers in the
(100) melt-solid interface.
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layers than for the (100) and the (111) interfaces; the
width is approximately 8—9 layers or 4d. The height of
the density peaks is smaller because of the open structure
of this crystalline surface. This difference also causes the
faster damping of the density oscillations in the liquid
side as compared to the (111) interface.

The density profiles in this work are very similar to the
LJ melt-solid interfaces simulated by Broughton and Gil-
mer [19] and the larger simulations of Galejs, Raveche,
and Lie [49] for the LJ system. This is not too surprising
because the melt-solid interface structure is in a large
part determined by the repulsive core of the interatomic
potential.

III. DENSITY-FUNCTIONAL THEORY
OF THE HARD-SPHERE MELT-SOLID INTERFACE

A. PGELA study of the melt-solid interface

The basic principles of DFT are described in [50] and
will not be repeated here. Several excellent review papers
have been published that review its variations and appli-
cations [51-54]. The Helmholtz free energy F functional
of the inhomogeneous system is written as

Flp]l=F4+F. . +F, , (5)

ext

where this functional is the sum of three contributions.
(i) The ideal gas contribution F;y corresponds to the
limit of no interparticle interactions

Fy=B""[drp(r){In[p(r)A*]—1} , (6)

where A=(h?B/2m)'/? is the thermal wavelength.
(i) The external potential contribution F,,, corresponds
to the effects of external forces acting on the system

Fo= [drpmwir). @)

(iii) The excess free energy contribution F,, corre-
sponds to the contributions to the free energy that are
due to the interatomic interactions in the system.

The first two terms are known exactly as functionals of
the nonuniform system density p(r) as given by Eq. (6)
and (7). The excess free energy functional is unknown
and various density-functional approximations differ in
the construction of approximations to this term. Models
for F.,[p(r)] cause the distinction between perturbative
and nonperturbative approximations. Perturbative
density-functional approximations are based on an expan-
sion of the properties of the inhomogeneous system
around those of a uniform liquid, which is well character-
ized by liquid state theory [9]. The limited success [55] of
this approach led to the development of a whole family of
approximations that avoid using Taylor series expansions
about the uniform liquid. Nonperturbative approxima-
tions to the excess free energy are constructed based on
the definition of the two-body direct correlation function
of inhomogeneous systems c¢‘?)(r;,r,) as the second func-
tional derivative of the excess free energy with respect to
the density. The excess free energy is written as [56]
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[J’Fex[p]=—fdrfdr’foldk(l—k)p(r)p(r’)
XcPr,t';[Ap]), (8)

which is an exact expression for the excess free energy of
an inhomogeneous system. Unfortunately, it requires the
knowledge of ¢‘®(r,r’), which is unknown. Approxima-
tions for ¢?(r,r’') cause all nonperturbative DFTs to be
inexact. Various approximations are based on thermo-
dynamic and structural information of the uniform
liquid, which is either available in analytical form (i.e.,
for the hard-sphere system) or may be computed from
atomistic simulations or integral equation theory.

The first of the two approximations is the thermo-
dynamic mapping approximation, which has origins that
may be traced back to Van der Waals [57]. Both global
[56,58] and local [59,60] forms of this approximation
have been determined and differ according to the sym-
metries in the inhomogeneous system. We focus on the
approximations that are used in the systems where the
bulk density varies in one spatial dimension, otherwise
known as the planar mapping approximations. The ex-
cess free energy is written as

Folpn)]= [drplz)fo(p(2)) , 9)

where pl(z)=(1/4 )fdx dy p(r) is the plane-averaged
density introduced by Marr and Gast [20].

Several different prescriptions for the structural map-
ping have been used. We use the structural mapping

[ dr [drp(rip(r)e P, [p])
= [dr [arprp()cP(r—r';p(z;[p]) ,  (10)

which maps the density weighted direct correlation func-
tion of the inhomogeneous system to the density weight-
ed direct correlation function of the effective system with
density p(z) at each point along the z direction [61]. This
is the basis of the PGELA.

The DFT introduces three unknowns: the excess free
energy fBF,,, the two-body direct correlation function
¢®(r,r’), and the effective (or weighted) density p(z).
These variables are determined from three equations: the
exact equation (8) and the thermodynamic and structural
mapping equations (9) and (10). Combining these equa-
tions yields a framework for the evaluation of the free en-
ergy of the inhomogeneous system so that the equilibrium
density of the nonuniform system is found by minimizing
the total free energy F with respect to the density profile
p(r).

The study of coexistence of a hard-sphere solid with a
liquid using the PGELA free energy functional is de-
scribed in [62]. The results of this study are used as the
starting point for the analysis of the melt-solid interface.
Specifically, the information that is required for the
PGELA model is listed in Table II.

The application of density-functional theory to melt-
solid interface focuses on the calculation of the excess in-
terface thermodynamic properties. The grand potential
Q for the inhomogeneous interfacial region is expressed
as
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TABLE II. Comparison of coexistence properties predicted
by the PGELA and the PWDA [20] density-functional theories
to melt-crystal system simulations, where Ap=p,—p, and
P=fpd? is the pressure.

Theory psd? pd? Ap /ps P
MC 1.04 0.94 0.094 11.7
PGELA (PY) 1.001 0.904 0.097 10.5
PWDA (PY) 1.026 0.882 0.140 9.5
PGELA (CS) 1.038 0.945 0.089 11.9

Qlp(1)1=F[p(r)]—p [ drp(r) . (11)

At solid-liquid coexistence conditions,
QSZ_PVS’ QIZ_PVI s (12)

so that the excess grand potential of the melt-solid inter-
face becomes

AQ[p(1)]=F[p(r)]—u [ drp(r)+PV , (13)

where V=V +V,if V;,, =0. According to the variation-
al principle of DFT [50], the interfacial region is de-
scribed by a density profile p(r), which minimizes A(Q,
subject to the constraints that the region is surrounded by
the bulk phases, i.e.,, p(r)=p(r) and p(r)=p, at the
coexistence values of (u, P, T). The excess interfacial free
energy is given as

AQ

P ) (14)

min

YsL™

where the subscript implies that the value of the excess
grand potential corresponds to the minimum.

The following steps are needed to proceed with the cal-
culation of y¢;.

(i) A density parametrization for p(r) is defined, which
introduces a set of variational parameters {a, }.

(ii) The ideal contribution to the free energy of the in-
homogeneous interfacial region is computed.

(iii) The excess contribution to the free energy from the
PGELA free energy functional is computed. This in-
volves solving for p(z) at every integration point across
the interface.

(iv) The computed value of A is minimized with
respect to the set of variational parameters {a, }.

The accuracy and the efficiency of the parametrization
used to describe the density variations in the interfacial
region plays important roles in the utility of a DFT for
the melt-solid interface. For example, McMullen and
Oxtoby [15,16] demonstrated significantly different pre-
dictions for the surface free energy 7y using two
different parametrizations of the surface and shed doubt
on the accuracy of the square gradient approximation for
predicting interface structure.

The efficient parametrization of p(r) in the interfacial
region is a challenging problem. The approximation
must evolve smoothly between the densities of the sur-
rounding bulk solid an liquid phases, using a minimal set
of parameters. The atomistic simulations described in
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Sec. II suggest functional forms and discount others. For
example, the approximation used by Moore and Raveche
[14] is not optimal because it does not allow for any
broadening of the peaks in the density across the inter-
face, as is observed in the density profiles shown in Fig. 4.
The approximation to the density profile should capture
the gradual broadening of the peaks across the interfacial
region, which leads through eventual overlaps to a uni-
form liquid density. Predictions of the rate of broadening
of the peaks and the width of the interfacial region
should result from the free energy minimization for the
inhomogeneous system and should not be fixed by the pa-
rametrization.

Curtin developed a flexible representation of the inter-
facial density [18] using two variables. The starting point
was the parametrization of Haymet and Oxtoby [9] [Eq.
(1)] rewritten as

plr)=p;+(p;—pho(z)+ 3 pchs(z)exp(iG 1) , (15)
G

where {ps] are the coefficients of the Fourier expansion
for the Gaussians used to represent the density variations
in the bulk solid and {4} is a set of shape functions that
characterize the transition between the solid and the
liquid across the interface. The shape functions must
satisfy

hs(z)—1 as z—solid , (16)

hg(z)—0 as z—liquid
to match the bulk values of the density. Curtin used the
following expression to describe the shape functions:

1, lzl<z,
Z—2p
hg(z)= {1 {1+cos |7 , zo<lzl<zg (D)
Azg
0, ZG<|Z| >

where z;, is the starting point of the interface,
zg=2zy+Azs is the point where the shape function ob-
tains its liquidlike value, and Az; is the width of the in-
terface. Equation (17) gives the shape function corre-
sponding to a slab geometry with two equivalent melt-
solid interfaces.

If all shape functions were allowed to decay on the
same length scale, there would be no broadening of the
density peaks across the interfacial region. To incorpo-
rate peak broadening, Curtin assumed that the decay rate
of the shape functions is determined by the magnitude of
the corresponding reciprocal lattice vector G, so that the
decay length is given by
Azg=lz5—2zo|=(G,/G)Az, 0<v=<1, G=G,, (18)
where G, is the magnitude of the smallest nonzero re-
ciprocal lattice vector, the parameter Az=Az, controls
the width of the interface, and the parameter v controls
the rate of broadening of the density peaks.

The parameters {Az,v} are the two variables in the pa-
J

[ dx dyp(r)fdr’fnldk(l—}»)céz’(lr—r’l;ﬁ(z;[hp]))
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rametrization, Eqgs. (15)-(18). This approach has the fol-
lowing advantage.

(i) The extent of the interfacial region is strictly defined
through the parameters z, and Az. This simplifies the in-
tegrations required to compute the excess interfacial
properties.

(ii) The use of the slab geometry with two interfaces al-
lows the computation of the Fourier transform of the
shape function. This greatly simplifies the calculations of
the weighted density.

A limitation of this parametrization (termed P-I) is that it
truncates the density oscillations very suddenly in the
liquid region. The atomistic simulations described in Sec.
II showed that the density oscillations decay over longer
length scales in the liquid. This is an effect of the use of
the cosine function by Curtin. In this work, the Curtin
parametrization is used as a reference because it has been
used by most previous studies of the melt-solid interface
using nonperturbative DFT [17,18,20].

To study the effect of the decay of the density oscilla-
tions in the liquid, we have developed an alternative den-
sity parametrization, which is similar to P-I, but does not
restrict the end of the decay length z;. This is achieved
by constructing a hybrid parametrization

1, z<z

z—2z, Azg
+1+cos |7 » Zg<z<zp+

hg(z)= Azg

z—zy 1 Azg
11— -
2[1 tanh |7 Az > H , Zot <z

(19)

for a slab geometry about the origin and for positive
values of z. The parametrization [Eq. (19)] (termed P-II)
combines the advantages and flexibility of the Curtin pa-
rametrization with the decay of the hyperbolic tangent,
which is more realistic for the interfacial region. The
solid side of the interface begins at z,. The shape func-
tions decay to half of their value in the Az; /2 region and
then decay smoothly to the liquid value. The only disad-
vantage of parametrization P-II with respect to the pa-
rametrization P-I is in the fact that the Fourier trans-
forms of these shape functions cannot be performed
analytically, which makes calculations with parametriza-
tion P-II more expensive.

Using the PGELA-DFT formulation the excess free
energy of the interface region is given by the thermo-
dynamic mapping equation

Fo=4 [dz piz)fe(p(z)), (20)

where A4 is the surface area of the interface,
p(z)=(1/4 )fdx dy p(r) is the planar averaged density,
and p(z) is the weighted density.

The weighted density is given by the PGELA equation

(21)

—Bfolp(z))=
Bfolplz Ap(z)
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Equation (21) is a nonlinear integral equation for the
p(z), which is solved at each integration point for the
evaluation of the integral in Eq. (20).

The solution procedure used is similar to that used for
the bulk solid and is the same as that presented by Lutsko
and Baus [56] using the generalized effective liquid ap-
proximation. The integrals on the right-hand side of Eq.
(21) are difficult to compute in real space, because they
involve integrating over five spatial dimensions and one
integration in A. The density parametrization Eq. (15) is
introduced into the set of equations to transform integra-
tions in real space to sums over reciprocal lattice vectors.
This transformation significantly reduces the number of
arithmetic operations and is described extensively in
Refs. [18,20,62].

The resulting equations are solved numerically using
Newton’s method, with the components of the Jacobian
matrix evaluated by numerical differentiation. The
weighted density profiles obtained this way should satisfy
the requirements

Pin(2)—p;(z), z—>solid ;
(22)
Pintlz)—p;, z—liquid

as tests of the accuracy of the approximation in the solu-
tion for p(z).

Given the weighted density profile, the excess free en-
ergy contributions are computed from Eq. (20). Gaussian
quadrature is used in the integration over z. Some terms
in the equations for p(z) are divided by the plane-
averaged density p(z). In the interlayer space, this quan-
tity becomes very small and affects the accuracy of the
solutions for p(z). In the calculations that follow, all in-
tegration points at which p(z) <1073 are ignored. Marr
and Gast [20] used a similar convention to avoid conver-
gence problems in their planar weighted density approxi-
mation (PWDA) treatment of the melt-solid interface.

The excess grand potential for the interfacial region is
evaluated and minimized with respect to (Az,v). Because
of the computational cost in the evaluation of AQ the
minimization is carried out with the two parameters
sequentially. The sensitivity of the predictions to the two
variational parameters is described in Sec. IIIB.

B. Results of DFT analysis

The PGELA-DFT formulation of the melt-solid inter-
facial region was used to calculate the (100), the (110),
and the (111) melt-solid interfaces for the hard-sphere
system, using the PY and the CS equations of state. The
results for the CS hard-sphere system are presented in
Sec. III B 1 with both the P-I and the P-II density param-
etrizations. Results for the PY system also are presented
in Sec. III B2 in order to compare the predictions of the
PGELA with those of previous density-functional ap-
proximations for the hard-sphere melt/solid interface.

1. Carnahan-Starling hard spheres

The variation of the surface free energy yg; with the
width of the interface Az is shown in Fig. 6 for the (111)
interface. The results use the two parametrizations P-I
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FIG. 6. (a) Variation of the surface free energy with the
width of the (111) interface, for the P-I (@) and the P-II (O)
density parametrizations with v=0.25. (b) Variation of the sur-
face free energy with the parameter v for the (111) interface, for
the P-I (@) and the P-II (O) density parametrizations with
Az=3.

and P-II, for a fixed value of the rate of broadening
v=0.25, which was found by Curtin [18] to correspond
to the minimum surface free energy in the WDA study of
the interface. The width parameter is scaled by the bulk
solid layer spacing 8,;;=a /V'3. Both the P-I and the P-
II parametrizations yield similar results, with the
minimum in the surface free energy corresponding to an
interface with a width of three layers. The minimum is
steeper for the P-II parametrization. Relaxing the decay
on the liquid side minimizes the excess free energy for
narrower interfaces. The value of yg; predicted using the
parametrization P-II for Az=2 is significantly smaller
than that predicted using the P-I parametrization. Near
the minimum the effect becomes less important and for
Az >3 the relaxation has the opposite effect. The surface
free energy is computed as By g d*>=0.37.

The equilibrium planar averaged density profiles pre-
dicted by the two parametrizations for the (111) interface
are shown in Fig. 7. The results are identical in the first
two layers, as expected; however, the P-II parametriza-
tion yields an interface with density oscillations that de-
cay more slowly. This leads to a larger effective width for
the interface. Using P-I the width of the interface is
roughly (3-4d). Alternatively, using the P-II parame-
trization there are at least two additional peaks in the
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FIG. 7. Equilibrium planar averaged density profiles predict-
ed by the PGELA for the (111) interface using the (a) P-I and (b)
P-II density parametrizations. The dotted lines correspond to
the boundaries of the interfacial region.

(a) P-I

p(z)d®

o
N

p(z)d®

density, which increases the apparent width of the inter-
face of 4.5d. The MC simulations of Sec. II predicted an
apparent width of (5-6)d for the (111) interface. The
theoretical predictions are thereby narrower than those
computed by the MC simulation. The reason for this
difference is unresolved; it is most likely due to shortcom-
ings of the free energy functional or the parametrization.
The effect of modifying the parameter v, which con-
trols the rate of broadening, for a fixed value of Az=3 is
shown in Fig. 6 for the two density parametrizations P-I
and P-II. The value of v=0.25 used for determining the
minimum of the surface free energy with respect to the
width of the interface lies very close to minimum, which
for both parametrizations is around v=0.35. This
difference in v does not affect significantly the previous
result for yg;. For the P-II approximation, the minimum
value of the surface free energy is By g d>=0.36.
Calculations for the (100) interface are reported in Fig.
8, which shows the effect of the interface widths on the
surface free energy for v=0.25. For (100) orientation the
spacing is 8;5p=a /2. The minimum of yg lies at the
value Az=4. The corresponding values of the surface
free energy are By d>=0.34 for P-I parametrization and
Bys.d?=0.35 for P-II parametrization. Unlike the re-
sults for the (111) interface, there is a small difference in
the predicted values with the parametrization of the den-
sity. Again P-II parametrization is preferable for small
Az, but as Az >4 its predictions for yg become larger
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FIG. 8 (a) Variation of the surface free energy with the width
of the (100) interface, for the P-1 (®) and the P-II (O) density
parametrizations with v=0.25. (b) Variation of the surface free
energy with the parameter v for the (100) interface, for the P-I
(@) and the P-II (O) density parametrizations with Az =4.

than those of P-I parametrization.

The planar averaged density profiles for the equilibri-
um interfaces are shown in Fig. 9 and are different from
the MC simulations. In the case of the (100) interface
both parametrizations are unable to capture the transi-
tion from the (100) layer spacing to the (111) layer spac-
ing that was found in the MC simulations. This is be-
cause only structural information corresponding to the
(100) interface orientation is used as input to the density
parametrization.

The width of the interface predicted by P-I is again
narrower than that predicted by P-II parametrization, for
the same reasons as for the (111) interface. Specifically,
the P-I parametrization yields the width of Az =3d, while
the P-II parametrization yields the slightly broader inter-
face Az=(4-5)d, in agreement with the MC simulations
prediction. The variation of the surface free energy with
the rate of broadening of the peaks for Az=4 for both
parametrizations is shown in Fig. 8. The behavior is very
similar to the calculations for the (111) interface. The
minimum for both parametrizations lies near v=0.3 and
both parametrizations yield practically the same values
for the surface free energy By d>=0.34.

The variation of yg; for the (110) interface orientation
with the width of the interface is shown in Fig. 10, as
measured in terms of the number of layers Az. For the
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FIG. 9. Equilibrium planar averaged density profiles predict-
ed by the PGELA for the (100) interface using the (a) P-I and (b)
P-II density parametrizations. The dotted lines correspond to
the boundaries of the interfacial region.

fcc (110) orientation, the width of each layer is
8,10=a/V'2/4. In this case, the two density parametriz-
ations yield different minima; P-I has a minimum at
Az =6 with By d*=0.32 and P-II predicts a minimum
at Az=35 with By5 d?=0.33. The equilibrium planar
averaged density profiles predicted for the two parame-

0.50
0.45 |- 1
o [ |
T o040} -
Q. 3 ]
0.35 ]
0'30 L 1 1 1 1 |
2 4 6 8 10

Az/8,40

FIG. 10. Variation of the surface free energy with the width
of the (110) interface, for the P-I (®) and the P-II (O ) density
parametrizations with v=0.25.

FIG. 11. Equilibrium planar averaged density profiles pre-
dicted by the PGELA for the (110) interface using the (a) P-I
and (b) P-II density parametrizations. The dotted lines corre-
spond to the boundaries of the interfacial region.

trizations are compared in Fig. 11. The interface predict-
ed by P-I is narrower and has a width of 3.3d; the inter-
face predicted by P-II has a width of 4d. The MC simu-
lations predicted a width of approximately 4d.

2. Percus-Yevick hard spheres

All the previous density-functional theory studies
[15,16,18,20] of the hard-sphere melt-crystal interface
have used thermodynamic and structural information for
both the solid and the liquid phases from the Percus-
Yevick equation of state and the corresponding
Wertheim direct correlation function. The thermo-
dynamic properties of the solid are not very sensitive to
the information used because PY and CS solids have
similar free energies. However, the liquid thermodynam-
ic properties are quite sensitive to the equation of state
and the coexistence conditions of a PY solid with a PY
liquid are different from those predicted by atomistic
simulations (see Table II). Both the solid and the liquid
densities predicted by DFT for the PY system are lower
than the exact values at coexistence and the solid is less
structured.

Comparisons of the PGELA results to those of previ-
ous studies are based on results presented in Fig. 12 for
the variation of yg with the interfacial width for the
(100), the (111), and the (110) interfaces for a value of
v=0.25 in all calculations. Only the P-I parametrization
was used in order to restrict the comparison to the effect
of changing the free energy functional. The results do
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FIG. 12. Effect of the width of the interface Az on the surface
free energy v for PY hard spheres with v=0.25. Results for
the (100) (@), the (111) (A), and the (110) (O) interface orienta-
tions.

not differ significantly from the predictions for the CS
hard spheres. The (111) interface has an equilibrium
width of four layers and By d*=0.30. Curtin [18] and
Marr and Gast [20] both calculated similar widths for the
(111) interface. However, both of these theories predict-
ed a twice as large value for the (111) surface free energy.
The (100) surface free energy is minimized at Az=5 and
gives By5 d?=0.28. The (110) interface again occupies
the largest number of layers Az=6-8 and gives
By d?=0.25.

IV. SUMMARY AND DISCUSSION

The results of atomistic simulation and density-
functional theory presented here give a thorough and
self-consistent picture of the structure and energetics of
the hard-sphere melt-crystal interface for the (100), the
(110), and the (111) crystallographic orientations of the
fce crystalline structure. The Monte Carlo calculations
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predict the width of the interface to vary between 4d for
the loosely packed (110) interface to approximately 6d for
the more closely packed (111) interface. This variation is
similar to calculations for continuous interatomic poten-
tials [19]. These results supply an important point of
comparison for the approximate DFT.

A density-functional theory for the melt-crystal inter-
face was constructed by combining the PGELA free ener-
gy functional with two parametrizations of the density
variation in the inhomogeneous melt-crystal system; one
parametrization P-I was used by Curtin and others
[17,18,20] and the second P-II is a variation of P-I. The
results based on the Carnahan-Starling and the Percus-
Yevick equations of state for the hard-sphere liquid are
compared in Table IIT with the results for atomistic simu-
lations and previous DFT approximations for the melt-
crystal system. The structural predictions of the P-
II-PGELA formulation based on the CS equation of
state are in good agreement with the atomistic simula-
tions, whereas the result using the P-I approximation give
a somewhat narrower interfacial region, although the
thermodynamic properties are similar to those predicted
by the P-II parametrization. Thereby, the effects of the
extended decay of the density implemented in the P-II
parametrization are small.

The results in Sec. III B clearly indicate that the accu-
racies of the structural and thermodynamic properties
depend on the accuracy of the parametrization of the
density profile across the interface. Both parametriza-
tions give plane-averaged density profiles in reasonable
agreement with the simulation. However, other features
of the simulation results, such as the variation in the
spacing of the density peaks with distance for the (100)
interface, are not captured by the parametrization used in
this paper. Mikheev and Trayanov [63] have presented a
more complex approximation of the density across the in-
terface, which divides the region into two layers; in one
the lateral order is rapidly lost as a function of distance
and in the other the density has order only in the direc-
tion perpendicular to the interface, as it would in a liquid.
Recently, Ohnesorge, Léwen, and Wagner [64] have
presented a more flexible fully variational model that
does not rely on shape functions; instead it determines
the variation of the density directly from its Fourier rep-
resentation. Both of the above mentioned approxima-

TABLE III. Summary of thermodynamic and structural information on the hard-sphere melt-solid

interface.
(100) (111) (110)

Theory Bysid*  Width  Bygd? Width  Bygd?  Width
MC (this work) (4-5)d (5-6)d 4d
PGELA (CS) parametrization P-I 0.34 3d 0.37 (3-4)d 0.32 3.3d
PGELA (CS) parametrization P-II 0.35 (4-5)d 0.37 (4-5)d 0.33 4d
PGELA (PY) parametrization P-I 0.28 4d 0.30 3.5d 0.25 4d
PWDA [20] 0.60 (3-4)d
WDA [18] 0.66 (3-4)d 0.63 (3-4)d
WDA [64] 0.35 5d 0.26 6d 0.30 4d
MO-1 [15] 1.766 (3-4)d 1.762 (3-4)d 1.767 (3-4)d
MO-2 [16] 4.0 ~6d
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tions lead to much more computationally intensive calcu-
lations.

No Monte Carlo or molecular simulations exist for the
surface free energy of the hard-sphere interface, so the
accuracy of the predictions of the DFT cannot be tested
directly. Comparison of results from various DFT ap-
proaches is complicated because each method is based on
predictions corresponding to different solid-melt coex-
istence conditions and so the bulk densities used in each
calculation are different. It is interesting that our predic-
tions for the surface free energy using the PY equation of
state are significantly smaller than previous results and
are comparable to the recent predictions of Ohnesorge,
Lgwen, and Wagner [64]. For example, our values of y g
are approximately a factor of 2 smaller than the values
predicted by Curtin [18] and Marr and Gast [20] based
on the WDA and the PWDA free energy functionals.
These differences cannot be attributed solely to the ap-
proximations for the excess free energy. The PGELA
formulation of the free energy predicts for PY hard
spheres a difference between the solid and liquid coex-
istence densities of (p, —p;)d*=0.097, while both the
PWDA and the WDA predict a difference of
(p; —p;)d*=0.140. Hence the density variation in the in-
terfacial region is more abrupt with the WDA and larger
excess properties should be expected. Another difference
between the various theories is the degree of ordering
predicted for the solid in equilibrium with the fluid phase.
In most cases the theories overpredict the solid structure,
thereby adding to the inaccuracy of the excess free energy
prediction.

The ordering of the surface free energies for the crys-
tallographic orientations of the interface also differs with

the choice of DFT approximation; calculations with the
WDA functional [18] predict that the (111) interface has
a smaller surface free energy than the (100) interface, in
contrast to our predictions using the PGELA DFT. The
ordering predicted by Ohnesorge, Léwen, and Wagner
[64] is that the (111) interface has the smallest surface
free energy, followed by the (110) interface, which is also
different from that found in this paper. The ordering of
the surface free energies of these three orientations has
been discussed by Broughton, Bonissent, and Abraham
[34] and Stranski [65] and there is uncertainty as to
whether the close-packed faces should have smaller or
larger surface free energies than open faces. Stranski [65]
argued that close-packed faces might be expected to have
higher values of yg;. Our calculations seem to agree with
this reasoning; however, the degree of anisotropy is found
to be at the most about 10%. Interestingly, the molecu-
lar dynamics calculations of Broughton and Gilmer
[19,35] demonstrated that the surface free energy is prac-
tically isotropic for the Lennard-Jones system, with very
small differences in the free energies, leading to the order
(110)>(111)>(100). Clearly, the next steps are to calcu-
late the surface free energy of the hard-sphere system by
atomistic simulation [66] and to extend the density-
functional thermodynamic perturbation scheme present-
ed in Refs. [67,68] to the calculation of the melt-crystal
system interface of the Lennard-Jones system.
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